The reaction of triethyl phosphite with o-nitrobenzaldehyde,<sup>7</sup> with benzaldehyde,<sup>8</sup> and with aromatic ketones9 has been reported. Epoxides and 1:1 adducts (analogous to VII) have been isolated from the reaction of a phosphorus triamide with aldehydes.<sup>10</sup>

Acknowledgment.--We are grateful to Prof. P. C. Lauterbur of this department for advice on P<sup>31</sup> n.m.r. spectroscopy and to Dr. E. M. Banas (American Oil Co.) and Prof. E. Eliel (University of Notre Dame) for some of the earlier H n.m.r. spectra.

(7) (a) V. A. Kukhtin and K. M. Kirillova, J. Gen. Chem. USSR, 31, 2078 (1961); (b) Zh. Obshch. Khim., 31, 2226 (1961).

(8) A. Arbuzov and V. M. Zoroastrova, Izv. Akad. Nauk SSSR Old. Khim. Nauk, 1030 (1960).

(9) A. C. Poshkus and J. E. Herweh, Abstracts, Division of Organic Chemistry 141st National Meeting of the American Chemical Society, Washington, D. C., March, 1962, p. 17-O.

(10) V. Mark, J. Am. Chem. Soc., 85, 1884 (1963).

DEPARTMENT OF CHEMISTRY FAUSTO RAMIREZ STATE UNIVERSITY OF NEW YORK STONY BROOK, NEW YORK A. V. Patwardhan STEPHEN R. HELLER **Received September 26, 1963** 

## Radical and Molecular Yields in the $\gamma$ -Radiolysis of $D_2O$ and $H_2O$ Vapor

Sir:

Recent work<sup>1,2</sup> on the  $\gamma$ -radiolysis of water vapor in the presence of scavengers for H and OH has led to estimates of the 100-e.v. yield  $G(\mathbf{H})$  which are different when  $D_2$  is used<sup>1</sup> from those obtained using organic scavengers.<sup>2</sup> The reactions involved are

$$H_2O \longrightarrow H, HO$$
$$H + RH \longrightarrow H_2 + R$$
$$H + D_2 \longrightarrow HD + D$$

and it is assumed that  $G(H_2)$  or G(HD) are measures of G(H). The observations<sup>2</sup> also showed the formation of  $H_2$  with a yield of 0.5, even in the presence of benzene which should remove all H without forming  $H_{2}$ , and suggested that, as with liquid water, there is a yield of molecular as well as atomic hydrogen. This we have now confirmed by observations on D<sub>2</sub>O radiolysis, and we also confirm that higher G(D) are found using  $H_2$ than using organic scavengers.

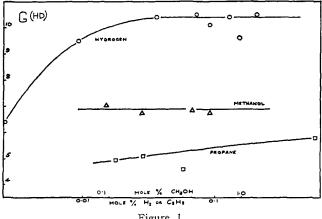



Figure 1.

The experiments were carried out as described previously<sup>2</sup> using doses of  $1.5 - 5.5 \times 10^{19}$  e.v. de-livered to the vapor at  $116^{\circ}$  and about 60-cm. pressure in a 5-1. vessel.

The values of G(HD) obtained with various amounts of H<sub>2</sub>, CH<sub>3</sub>OH, and C<sub>3</sub>H<sub>8</sub> present are shown in Fig. 1.

(1) R. Firestone, J. Am. Chem. Soc., 79, 5593 (1957).

(2) J. H. Baxendale and G. P. Gilbert, Discussions Faraday Soc., in press.

They attain limiting values of 10.5 with H<sub>2</sub> but appear to approach only about 7.0 with CH<sub>3</sub>OH or C<sub>3</sub>H<sub>8</sub>.

Furthermore, we have observed the formation of  $D_2$ which in the presence of the high concentrations of H<sub>2</sub> or  $C_3H_8$  can only originate as molecules from  $D_2O_2$ . For the six experiments with  $H_2$  present, where G(HD)has reached the maximum, we find  $G(D_2) = 0.56 \pm$ 0.07, and for the four experiments with C<sub>3</sub>H<sub>8</sub> present, we observe  $G(D_2) = 0.48 \pm 0.05$ . Higher values, viz.,  $G(D_2) = 0.80 \pm 0.02$ , are found in the methanol experiments, but we believe the increase over 0.5 can be attributed to the reaction

$$D + CH_3OD \longrightarrow D_2 + CH_3O$$

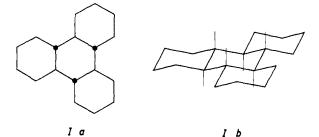
occurring to a small extent.

The molecular hydrogen may be formed by an excitation process or perhaps from the ion H-, as proposed by Platzman<sup>3</sup>

$$H_2O + e \longrightarrow H^- + OH$$
  
 $H^- + H_2O \longrightarrow H_2 + OH^-$ 

but if this is the only source, the yield of H<sup>-</sup> would need to be about twice the value he suggested.

(3) R. L. Platzman, Abstracts of the Second International Congress of Radiation Research, Harrogate, 1962, p. 128.


| DEPARTMENT OF<br>UNIVERSITY OF<br>MANCHESTER | MANCH | IESTER | J. H. BAXENDALE<br>G. P. GILBERT |  |
|----------------------------------------------|-------|--------|----------------------------------|--|
|                                              | -     | -      | 0                                |  |

**RECEIVED DECEMBER 6, 1963** 

## **Inclusion Compounds Containing Macromolecules** Sir:

Although several inclusion compounds have been extensively studied recently,<sup>1</sup> little is known about inclusion compounds containing macromolecules. Brown and White<sup>2</sup> succeeded in polymerizing 1,3butadiene and other monomers when included in urea or thiourea; nevertheless, no direct experimental evidence as to the formation of inclusion compounds with the polymers produced has been given. Recently, Parrod and others<sup>3</sup> verified the formation of an inclusion compound of urea with polyoxyethylene glycol, but attempts to include polyethylene and 1,4-polybutadiene into the same host structure were unsuccessful.

We have now found that several kinds of linear macromolecules such as polyethylene, cis-1,4 polybutadiene, trans-1,4 polybutadiene, and polyoxyethylene glycol give rise to very stable inclusion compounds with a host molecule of a new kind, the trans-anti-trans-antitrans-perhydrotriphenylene (PHTP) (I). This com-



pound, recently synthesized in our Institute,<sup>4</sup> has shown a very strong tendency to include, in the crys-

(1) S. M. Hagan, "Clathrate Inclusion Compounds," Reinhold Publishing Co., New York, N. Y., 1962; for detailed studies on Channel-like structures: W. Schlenk, Jr., Fortschr. Chem. Forsch., 2, 92 (1951); D. Lawton and H. M. Powell, J. Chem. Soc., 2339 (1958).

(2) J. F. Brown and D. M. White, J. Am. Chem. Soc., 82, 5671 (1960); D. M. White, ibid., 82, 5678 (1960).

(3) J. Parrod and A. Kohler, Compt. Rend., 246, 1046 (1958); J. Polymer Sci., 48, 457 (1960); A. Kohler, G. Hild, and J. Parrod, Compt. Rend., 255, 2763 (1962)

(4) M. Farina, Tetrahedron Letters, in press